Adaptive Sliding Mode Control with RBF Neural Network-Based Tuning Method for Parallel Robot.

IECON(2022)

引用 0|浏览0
暂无评分
摘要
In this paper, a novel adaptive sliding mode control scheme with RBF (radial basis function) neural network-based tuning method is proposed for the trajectory tracking of a 6-RSS (Revolute-Spherical-Spherical) parallel robot in Cartesian space. Parallel robot is a highly nonlinear system with closed-chain mechanisms, which poses the major challenges to the controller design. The robust sliding mode controller is developed to deal with system uncertainties such as modeling errors, frictions, and disturbances. With strong adaptation and learning ability, RBF neural network is adopted to identify the parallel robot dynamics, and then the adaptive self-tuning of the control gains in the controller is realized, which is more flexible than manual tuning method and can guarantee the desired results of the changing system. The stability of the controller has been validated using Lyapunov theorem. Simulation results demonstrate that the proposed controller can achieve better tracking performance than the sliding mode controller with fixed control gains.
更多
查看译文
关键词
Parallel robot,adaptive sliding mode control,RBF neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要