Knowledge-Adaptive Contrastive Learning for Recommendation.

WSDM(2023)

引用 12|浏览106
暂无评分
摘要
By jointly modeling user-item interactions and knowledge graph (KG) information, KG-based recommender systems have shown their superiority in alleviating data sparsity and cold start problems. Recently, graph neural networks (GNNs) have been widely used in KG-based recommendation, owing to the strong ability of capturing high-order structural information. However, we argue that existing GNN-based methods have the following two limitations. Interaction domination: the supervision signal of user-item interaction will dominate the model training, and thus the information of KG is barely encoded in learned item representations; Knowledge overload: KG contains much recommendation-irrelevant information, and such noise would be enlarged during the message aggregation of GNNs. The above limitations prevent existing methods to fully utilize the valuable information lying in KG. In this paper, we propose a novel algorithm named Knowledge-Adaptive Contrastive Learning (KACL) to address these challenges. Specifically, we first generate data augmentations from user-item interaction view and KG view separately, and perform contrastive learning across the two views. Our design of contrastive loss will force the item representations to encode information shared by both views, thereby alleviating the interaction domination issue. Moreover, we introduce two learnable view generators to adaptively remove task-irrelevant edges during data augmentation, and help tolerate the noises brought by knowledge overload. Experimental results on three public benchmarks demonstrate that KACL can significantly improve the performance on top-K recommendation compared with state-of-the-art methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要