Thick Cloud Removal in Multi-Temporal Remote Sensing Images via Frequency Spectrum-Modulated Tensor Completion

Remote. Sens.(2023)

引用 1|浏览14
暂无评分
摘要
Clouds often contaminate remote sensing images, which leads to missing land feature information and subsequent application degradation. Low-rank tensor completion has shown great potential in the reconstruction of multi-temporal remote sensing images. However, existing methods ignore different low-rank properties in the spatial and temporal dimensions, such that they cannot utilize spatial and temporal information adequately. In this paper, we propose a new frequency spectrum-modulated tensor completion method (FMTC). First, remote sensing images are rearranged as third-order spatial-temporal tensors for each band. Then, Fourier transform (FT) is introduced in the temporal dimension of the rearranged tensor to generate a spatial-frequential tensor. In view of the fact that land features represent low-frequency components and fickle clouds represent high-frequency components in the time domain, we chose adaptive weights for the completion of different low-rank spatial matrixes, according to the frequency spectrum. Then, Invert Fourier Transform (IFT) was implemented. Through this method, the joint low-rank spatial-temporal constraint was achieved. The simulated data experiments demonstrate that FMTC is applicable on different land-cover types and different missing sizes. With real data experiments, we have validated the effectiveness and stability of FMTC for time-series remote sensing image reconstruction. Compared with other algorithms, the performance of FMTC is better in quantitative and qualitative terms, especially when considering the spectral accuracy and temporal continuity.
更多
查看译文
关键词
multi-temporal remote sensing images,image reconstruction,low-rank tensor completion,Fourier transform
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要