Z-scheme Cu2MoS4/CdS/In2S3 nanocages heterojunctions-based PEC aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with hollow PtPd-CoSnO3 nanozyme

BIOSENSORS & BIOELECTRONICS(2023)

引用 6|浏览3
暂无评分
摘要
Fumonisin B1 (FB1), the most prevalent and highest toxicity mycotoxins among fumonisins family, poses threats to human especially children and infants even at a trace level. Therefore, its facile and sensitive detection is of importance. Herein, Z-scheme Cu2MoS4/CdS/In2S3 nanocage-like heterojunctions (labeled Cu2MoS4/CdS/In2S3) were synthesized, whose photoelectrochemical (PEC) property and electron transfer mechanism were strictly investigated. The Cu2MoS4/CdS/In2S3 behaved as photoactive substrate for building a PEC sensing platform for detection of FB1, integrated with PtPd alloy modified hollow CoSnO3 nanoboxes (labeled PtPd-CoSnO3) nano-zyme. By virtue of the stronger affinity between the target FB1 and its aptamer (FB1-Apt), the photocurrent was recovered by releasing the CoSnO3-PtPd3 modified FB1-Apt (FB1-Apt/PtPd-CoSnO3) from the photoanode, which can terminate the catalytic precipitation reaction for its peroxidase-like property. The resultant PEC aptasensor exhibited a wider dynamic linear range from 1 x 10-4 to 1 x 102 ng mL-1 with a lower limit of detection (0.0723 pg mL-1). Thus, this research provides a feasible PEC sensing platform for routine analysis of other mycotoxins in practice.
更多
查看译文
关键词
Z -scheme heterojunctions,Photoelectrochemical aptasensor,Nanozyme,Hollow structures,Fumonisin B1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要