The ALMA Survey of 70 $\mu$m Dark High-mass Clumps in Early Stages (ASHES). IX. Physical Properties and Spatial Distribution of Cores in IRDCs

ASTROPHYSICAL JOURNAL(2023)

引用 0|浏览34
暂无评分
摘要
The initial conditions found in infrared dark clouds (IRDCs) provide insights on how high-mass stars and stellar clusters form. We have conducted high-angular resolution and high-sensitivity observations toward thirty-nine massive IRDC clumps, which have been mosaicked using the 12m and 7m arrays from the Atacama Large Millimeter/submillimeter Array (ALMA). The targets are 70 $\mu$m dark massive (220-4900 $M_\odot$), dense ($>$10$^4$ cm$^{-3}$), and cold ($\sim$10-20K) clumps located at distances between 2 and 6 kpc. We identify an unprecedented number of 839 cores, with masses between 0.05 and 81 $M_\odot$ using 1.3 mm dust continuum emission. About 55% of the cores are low-mass ($<$1 $M_\odot$), whereas $\lesssim$1% (7/839) are high-mass ($\gtrsim$27 $M_\odot$). We detect no high-mass prestellar cores. The most massive cores (MMC) identified within individual clumps lack sufficient mass to form high-mass stars without additional mass feeding. We find that the mass of the MMCs is correlated with the clump surface density, implying denser clumps produce more massive cores and a larger number of cores. There is no significant mass segregation except for a few tentative detections. In contrast, most clumps show segregation once the clump density is considered instead of mass. Although the dust continuum emission resolves clumps in a network of filaments, some of which consist of hub-filament systems, the majority of the MMCs are not found in the hubs. Our analysis shows that high-mass cores and MMCs have no preferred location with respect to low-mass cores at the earliest stages of high-mass star formation.
更多
查看译文
关键词
alma survey,cores,high-mass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要