谷歌浏览器插件
订阅小程序
在清言上使用

A State-Dependent Multilaminate Constitutive Model for Anisotropic Sands

Géotechnique/Geotechnique(2023)

引用 1|浏览13
暂无评分
摘要
Experimental studies show that initial fabric and its evolution under different stress paths greatly influences soil behaviour. Even though different sample preparation methods create different inherent anisotropies and cause different material responses, the same initial fabric structure under different stress paths also results in different material behaviours. In this paper, a simple state-dependent, bounding surface-based elastoplastic constitutive model, which can simulate the anisotropic nature of sands including the effect of principal stress rotation, is described. The model is developed based on a semi-micromechanical concept within the multilaminate framework and, to include the inherent anisotropy of sand, a deviatoric fabric tensor describing the initial microstructure is introduced. In addition, a fabric evolution rule compatible with anisotropic critical state theory is employed to describe the evolving fabric structure and induced anisotropy towards the critical state. In contrast to the classical strain-driven formulation for fabric evolution, a micro-level evolution rule is proposed. This paper presents concise theoretical aspects of the multilaminate framework and the anisotropic elastoplastic constitutive formulation. The model's capability under drained and undrained monotonic loading conditions at different stress states, relative densities and principal stress orientations is demonstrated by simulating experimental data for Toyoura sand.
更多
查看译文
关键词
anisotropy,constitutive relations,fabric/structure of soils,plasticity,sands
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要