Observation of MOSFET-like behavior of a TFT based on amorphous oxide semiconductor channel layer with suitable integration of atomic layered deposited high-k gate dielectrics

AIP ADVANCES(2023)

引用 0|浏览5
暂无评分
摘要
A series of different high kappa dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 & DEG;C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high kappa layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I-V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C-V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high kappa dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy.
更多
查看译文
关键词
semiconductor,mosfet-like
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要