Plant-Based Copper Oxide Nanoparticles; Biosynthesis, Characterization, Antibacterial Activity, Tanning Wastewater Treatment, and Heavy Metals Sorption

CATALYSTS(2023)

引用 11|浏览15
暂无评分
摘要
Herein, the aqueous extract of Portulaca oleracea has been used as a safe, cheap, eco-friendly, and applicable scale-up method to bio-fabricate copper oxide nanoparticles (CuO-NPs). The character of CuO-NPs were determined using UV-vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray(EDX), Dynamic light scattering (DLS), and zeta potential. Spherical and crystalline CuO-NPs with a size range of 5-30 nm at a maximum surface plasmon resonance of 275 nm were successfully fabricated. The main components of the green-synthesized particles were Cu and O with weight percentages of 49.92 and 28.45%, respectively. A Zeta-potential value of -24.6 mV was recorded for CuO-NPs, indicating their high stability. The plant-based CuO-NPs showed promising antimicrobial and catalytic activity in a dose-dependent manner. Results showed that the synthesized CuO-NPs had the efficacy to inhibit the growth of pathogens Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans with low MIC values in the ranges of 6.25-25 mu g/mL. The highest decolorization percentages of tanning wastewater were attained under sunlight irradiation conditions at a concentration of 2.0 mg/mL after 200 min with percentages of 88.6 +/- 1.5% compared to those which were recorded under dark conditions (70.3 +/- 1.2%). The physicochemical parameters of tanning wastewater including total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), biological oxygen demand (BOD), and conductivity under optimum conditions were significantly decreased with percentages of 95.2, 86.7, 91.4, 87.2, and 97.2%, respectively. Interestingly, the heavy metals including cobalt (Co), lead (Pb), nickel (Ni), cadmium (Cd), and chromium (Cr (VI)) decreased with percentages of 73.2, 80.8, 72.4, 64.4, and 91.4%, respectively, after treatment of tanning wastewater with CuO-NPs under optimum conditions. Overall, the plant-synthesized CuO-NPs that have antimicrobial and catalytic activities are considered a promising nano-catalyst and environmentally beneficial to wastewater treatment.
更多
查看译文
关键词
green synthesis,pathogenic microbes,leather effluent,heavy metals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要