Liquid-State Dithiocarbonate-Based Polymeric Additives with Monodispersity Rendering Perovskite Solar Cells with Exceptionally High Certified Photocurrent and Fill Factor

ADVANCED ENERGY MATERIALS(2023)

引用 6|浏览9
暂无评分
摘要
Dithiocarbonate-based non-hygroscopic polymers with a glass transition temperature (T-g) and polydispersity index (PDI) of approximate to 4 degrees C and 1, respectively, are synthesized through living cationic ring-opening polymerization. These liquid-state polymers are characterized by monodispersity based on the low T-g and PDI, rendering remarkable miscibility with the perovskite precursors without aggregation. Accordingly, these polymers are added to perovskite solar cells (PSCs) to enhance their power conversion efficiency (PCE). The PCE of reference PSCs increases from 19.70% to 23.52% after direct addition of the synthesized polymer. This efficiency improvement is attributed to the considerable increases in short-circuit current density (J(SC)) and fill factor (FF), resulting from the augmented size and defect passivation of perovskite crystals induced by added polymers. In fact, the PCE and J(SC) of the devices measured in the laboratory and the certification center are the highest among the reported polymer-added PSCs, thanks to the great miscibility of the new polymers leading to the large amount addition which enables more thorough passivation among the grain boundaries. The improvement in open-circuit voltage falls short as compared to that in J(SC) and FF, ascribed to the relatively moderate interaction strength between perovskite materials and dithiocarbonate groups.
更多
查看译文
关键词
perovskite solar cells,polymer passivation,polymeric additives,ring-opening polymerization,sulfur-containing polymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要