Large-Scale Date Palm Tree Segmentation from Multiscale UAV-Based and Aerial Images Using Deep Vision Transformers

DRONES(2023)

引用 7|浏览13
暂无评分
摘要
The reliable and efficient large-scale mapping of date palm trees from remotely sensed data is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments, environmental control, and long-term management. Given the increasing availability of UAV images with limited spectral information, the high intra-class variance of date palm trees, the variations in the spatial resolutions of the data, and the differences in image contexts and backgrounds, accurate mapping of date palm trees from very-high spatial resolution (VHSR) images can be challenging. This study aimed to investigate the reliability and the efficiency of various deep vision transformers in extracting date palm trees from multiscale and multisource VHSR images. Numerous vision transformers, including the Segformer, the Segmenter, the UperNet-Swin transformer, and the dense prediction transformer, with various levels of model complexity, were evaluated. The models were developed and evaluated using a set of comprehensive UAV-based and aerial images. The generalizability and the transferability of the deep vision transformers were evaluated and compared with various convolutional neural network-based (CNN) semantic segmentation models (including DeepLabV3+, PSPNet, FCN-ResNet-50, and DANet). The results of the examined deep vision transformers were generally comparable to several CNN-based models. The investigated deep vision transformers achieved satisfactory results in mapping date palm trees from the UAV images, with an mIoU ranging from 85% to 86.3% and an mF-score ranging from 91.62% to 92.44%. Among the evaluated models, the Segformer generated the highest segmentation results on the UAV-based and the multiscale testing datasets. The Segformer model, followed by the UperNet-Swin transformer, outperformed all of the evaluated CNN-based models in the multiscale testing dataset and in the additional unseen UAV testing dataset. In addition to delivering remarkable results in mapping date palm trees from versatile VHSR images, the Segformer model was among those with a small number of parameters and relatively low computing costs. Collectively, deep vision transformers could be used efficiently in developing and updating inventories of date palms and other tree species.
更多
查看译文
关键词
vision transformer,semantic segmentation,tree crown delineation,Segformer,Swin transformer,Segmenter,dense prediction transformer,CNN
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要