谷歌浏览器插件
订阅小程序
在清言上使用

Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor

CHEMICAL ENGINEERING JOURNAL(2023)

引用 9|浏览23
暂无评分
摘要
Bimetallic synergies have been commonly used to boost the intrinsic activity of metal-organic frameworks (MOFs), specifically accelerating the charge transfer in supercapacitor and improving the catalytic activity in electrocatalysis. Presently, most bimetallic synergistic MOFs are prepared by solvothermal method. However, the solvothermal process has several disadvantages such as time-consuming synthesis, acid and alkali corrosion, poor universality and controllability. Here, we present a novel vapor-phase microwave pulse discharge strategy for the rapid (20 s) introduction of bimetallic-synergistic configuration into MOFs. A high-performance and stable bimetallic Zn,Ni-catecholate (Zn,Ni-CAT) can be rapidly and controllably obtained by sputtering high-energy zinc particles onto conductive Ni-CAT utilizing microwave pulse-induced plasma and arc. Based on the high tunability of the microwave pulse discharge to the bimetallic lattice size, the Zn,Ni-CAT can exhibit extremely high area specific capacitance (422.54 mF cm-2), as well as robust long cycle stability (91.53 % retention of the original capacitance after 30,000 cycles). This rapid, acid/base-free and generic strategy is anticipated to provide a new route for atomic engineering of high-performance conductive functional materials for various applications.
更多
查看译文
关键词
Microwave discharge,Bimetallic synergy,Conductive metal -organic framework,Long-term,Supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要