Multi-Sample Consensus Driven Unsupervised Normal Estimation for 3D Point Clouds

CoRR(2023)

引用 0|浏览27
暂无评分
摘要
Deep normal estimators have made great strides on synthetic benchmarks. Unfortunately, their performance dramatically drops on the real scan data since they are supervised only on synthetic datasets. The point-wise annotation of ground truth normals is vulnerable to inefficiency and inaccuracies, which totally makes it impossible to build perfect real datasets for supervised deep learning. To overcome the challenge, we propose a multi-sample consensus paradigm for unsupervised normal estimation. The paradigm consists of multi-candidate sampling, candidate rejection, and mode determination. The latter two are driven by neighbor point consensus and candidate consensus respectively. Two primary implementations of the paradigm, MSUNE and MSUNE-Net, are proposed. MSUNE minimizes a candidate consensus loss in mode determination. As a robust optimization method, it outperforms the cutting-edge supervised deep learning methods on real data at the cost of longer runtime for sampling enough candidate normals for each query point. MSUNE-Net, the first unsupervised deep normal estimator as far as we know, significantly promotes the multi-sample consensus further. It transfers the three online stages of MSUNE to offline training. Thereby its inference time is 100 times faster. Besides that, more accurate inference is achieved, since the candidates of query points from similar patches can form a sufficiently large candidate set implicitly in MSUNE-Net. Comprehensive experiments demonstrate that the two proposed unsupervised methods are noticeably superior to some supervised deep normal estimators on the most common synthetic dataset. More importantly, they show better generalization ability and outperform all the SOTA conventional and deep methods on three real datasets: NYUV2, KITTI, and a dataset from PCV [1].
更多
查看译文
关键词
3d
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要