Indole-5,6-quinones display hallmark properties of eumelanin

Xueqing Wang, Lilia Kinziabulatova,Marco Bortoli, Anju Manickoth, Marisa A. Barilla, Haiyan Huang,Lluís Blancafort,Bern Kohler,Jean-Philip Lumb

Nature chemistry(2023)

引用 0|浏览4
暂无评分
摘要
Melanins are ubiquitous biopolymers produced from phenols and catechols by oxidation. They provide photoprotection, pigmentation and redox activity to most life forms, and inspire synthetic materials with desirable optical, electronic and mechanical properties. The chemical structures of melanins remain elusive, however, creating uncertainty about their roles, and preventing the design of synthetic mimics with tailored properties. Indole-5,6-quinone (IQ) has been implicated as a biosynthetic intermediate and structural subunit of mammalian eumelanin pigments, but its instability has prevented its isolation and unambiguous characterization. Here we use steric shielding to stabilize IQ and show that ‘blocked’ derivatives exhibit eumelanin’s characteristic ultrafast nonradiative decay and its ability to absorb light from the ultraviolet to the near-infrared. These new compounds are also redox-active and a source of paramagnetism, emulating eumelanin’s unique electronic properties, which include persistent radicals. Blocked IQs are atomistically precise and tailorable molecules that can offer a bottom–up understanding of emergent properties in eumelanin and have the potential to advance the rational design of melanin-inspired materials.
更多
查看译文
关键词
Chemistry,Organic chemistry,Optical spectroscopy,Theoretical chemistry,Chemistry/Food Science,general,Analytical Chemistry,Organic Chemistry,Physical Chemistry,Inorganic Chemistry,Biochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要