Protective effectiveness of prior SARS-CoV-2 infection and hybrid immunity against Omicron infection and severe disease: a systematic review and meta-regression

medrxiv(2022)

引用 12|浏览8
暂无评分
摘要
Background We aimed to systematically review the magnitude and duration of the protective effectiveness of prior infection (PE) and hybrid immunity (HE) against Omicron infection and severe disease. Methods We searched pre-print and peer-reviewed electronic databases for controlled studies from January 1, 2020, to June 1, 2022. Risk of bias (RoB) was assessed using the Risk of Bias In Non-Randomized Studies of Interventions (ROBINS-I)-Tool. We used random-effects meta-regression to estimate the magnitude of protection at 1-month intervals and the average change in protection since the last vaccine dose or infection from 3 months to 6 or 12 months. We compared our estimates of PE and HE to previously published estimates of the magnitude and durability of vaccine effectiveness (VE) against Omicron. Findings Eleven studies of prior infection and 15 studies of hybrid immunity were included. For prior infection, there were 97 estimates (27 at moderate RoB and 70 at serious RoB), with the longest follow up at 15 months. PE against hospitalization or severe disease was 82·5% [71·8-89·7%] at 3 months, and 74·6% [63·1-83·5%] at 12 months. PE against reinfection was 65·2% [52·9-75·9%] at 3 months, and 24·7% [16·4-35·5%] at 12 months. For HE, there were 153 estimates (78 at moderate RoB and 75 at serious RoB), with the longest follow up at 11 months for primary series vaccination and 4 months for first booster vaccination. Against hospitalization or severe disease, HE involving either primary series vaccination or first booster vaccination was consistently >95% for the available follow up. Against reinfection, HE involving primary series vaccination was 69·0% [58·9-77·5%] at 3 months after the most recent infection or vaccination, and 41·8% [31·5-52·8%] at 12 months, while HE involving first booster vaccination was 68·6% [58·8-76·9%] at 3 months, and 46·5% [36·0-57·3%] at 6 months. Against hospitalization or severe disease at 6 months, hybrid immunity with first booster vaccination (effectiveness 95·3% [81·9-98·9%]) or with primary series alone (96·5% [90·2-98·8%]) provided significantly greater protection than prior infection alone (80·1% [70·3-87·2%]), first booster vaccination alone (76·7% [72·5-80·4%]), or primary series alone (64·6% [54·5-73·6%]). Results for protection against reinfection were similar. Interpretation Prior infection and hybrid immunity both provided greater and more sustained protection against Omicron than vaccination alone. All protection estimates waned quickly against infection but remained high for hospitalisation or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection against all outcomes, reinforcing the global imperative for vaccination. Funding WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations. Evidence before this study The global emergence and rapid spread of Omicron (B.1.1.529) variant of concern, characterized by their ability to escape immunity, has required scientists and policymakers to reassess the population protection against Omicron infection and severe disease. So far, few systematic reviews have incorporated data on Omicron, and none have examined the protection against Omicron conferred by hybrid immunity (i.e. the immunity gained from the combination of vaccination and prior infection) which is now widespread globally. While one preprint has recently reported protection from prior infection over time, no systematic review has systematically compared the magnitude and duration of vaccination, prior infection, and hybrid immunity. A large single-country study has reported that protection from either infection or hybrid immunity against Omicron infection wanes to low levels at 15 months, but is relatively stable against severe disease. Added value of this study Prior infection and hybrid immunity both provided greater and more sustained protection against Omicron than vaccination alone. Individuals with hybrid immunity had the highest magnitude and durability of protection against all outcomes; protection against severe disease remained above 95% until the end of available follow-up at 11 months after hybrid immunity with primary series and 4 months after hybrid immunity with booster vaccination, and was sustained at these high levels of protection in projections to 12 months and 6 months, respectively. Implications of all the available evidence These results may serve to tailor guidance on the optimal number and timing of vaccinations. At the public health level, these findings can be combined with data on local infection prevalence, vaccination rates, and their timing. In settings with high seroprevalence, limited resources, and competing health priorities, it may be reasonable to focus on achieving high coverage rates with primary series among individuals who are at higher risk of poor outcome, as this will provide a high level of protection against severe disease for at least one year among those with prior infection. Furthermore, given the waning protection for both infection-and vaccine induced immunity against infection or reinfection, mass vaccination could be timed for roll-out prior to periods of expected increased incidence, such as the winter season. At the individual level, these results can be combined with knowledge of a person’s infection and vaccination history. A six-month delay in booster may be justified after the last infection or vaccination for individuals with a known prior infection and full primary series vaccination. Further follow-up of the protective effectiveness of hybrid immunity against hospitalization or severe disease for all vaccines is needed to clarify how much waning of protection might occur with longer duration since the last infection or vaccination. Producing estimates of protection for new variant-containing vaccines will be crucial for COVID-19 vaccine policy and decision-making bodies. Policy makers considering the use and timing of vaccinations should include the local extent of past infection, the protection conferred by prior infection or hybrid immunity, and the duration of this protection as key considerations to inform their decision-making. ### Competing Interest Statement The authors have declared no competing interest. ### Clinical Protocols ### Funding Statement This work was supported by World Health Organization (WHO) through funding from the WHO Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations (CEPI). The funders had no role in the collection, analysis, and interpretation of data; in the writing of the report, or in the decision to submit the paper for publication. The views reported do not necessarily reflect the official position of WHO or CEPI. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable. Yes Data extracted from published articles and used in our analysis will be made available upon request after approval of a study proposal. Data provided to us directly by authors of the included studies will not be shared unless permission from the original study authors is provided. Obtaining these permissions will be the responsibility of the investigators making the request for data.
更多
查看译文
关键词
omicron infection,hybrid immunity,sars-cov,meta-regression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要