In vivo ovarian cancer gene therapy using CRISPR-Cas9 system.

HUMAN GENE THERAPY(2018)

引用 54|浏览23
暂无评分
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-caspase 9 (Cas9) genome editing technology holds great promise for the field of human gene therapy. However, a lack of safe and effective delivery systems restricts its biomedical application. Here, a folate receptor-targeted liposome (F-LP) was used to deliver CRISPR plasmid DNA co-expressing Cas9 and single-guide RNA targeting the ovarian cancer-related DNA methyltransferase 1 (DNMT1) gene (gDNMT1). F-LP efficiently bound the gDNMT1 plasmid and formed a stable complex (F-LP/gDNMT1) that was safe for injection. F-LP/gDNMT1 effectively mutated endogenous DNMT1 in vitro, and then expressed the Cas9 endonuclease and downregulated DNMT1 in vivo. The tumor growth of both paclitaxel-sensitive and -resistant ovarian cancers were inhibited by F-LP/gDNMT1, which shows fewer adverse effects than paclitaxel injection. Therefore, CRISPR-Cas9-targeted DNMT1 manipulation may be a potential therapeutic regimen for ovarian cancer, and lipid-mediated delivery systems represent promising delivery vectors of CRISPR-Cas9 technology for precise genome editing therapeutics.
更多
查看译文
关键词
CRISPR,DNA methyltransferase,ovarian cancer,gene delivery,targeted therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要