Calibration-free regional RF shims for MR spectroscopy

medRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览3
暂无评分
摘要
Purpose Sufficient control of the RF transmit field (B1+) in small regions-of-interest (ROIs) is critical for single voxel MR spectroscopy at ultra-high field. Static RF shimming, using parallel transmit (pTx), can improve B1+, but must be calibrated for each participant and ROI, which limits its applicability. Additionally, specific-absorption-rate (SAR) becomes hard to predict. This work aimed to find RF shims, which can be applied to any participant, to produce the desired |B1+| within pre-defined target ROIs. Methods RF shims were found offline by joint-optimisation on a database, comprising B1+ maps from 11 subjects, considering ROIs in occipital cortex, hippocampus and posterior-cingulate, as well as the whole brain. The B1+ magnitude achieved using calibration-free RF shims was compared to a tailored shimming approach, and MR spectra were acquired using tailored and calibration-free RF shimming in 4 participants. Global and local 10g SAR deposition were modelled. Results Calibration-free RF shims resulted in similar |B1+| in small ROIs compared to tailored shimming, in addition to producing spectra of excellent quality and equivalent SNR. Only a small database size was required. SAR deposition was reduced compared to operating in quadrature mode for all ROIs. Conclusion This work demonstrates that static RF shims, optimised offline for small regions in single voxel MRS, avoid the need for lengthy B1+ mapping and pTx optimisation for each ROI and participant. Furthermore, power settings may be increased when using calibration-free shims to better take advantage of the flexibility provided by RF shimming for regional acquisition at ultra-high field. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement No external funding was recieved by the authors or institutions for the purposes of this work. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: Local ethics committee of the Sir Peter Mansfield Imaging Centre, University of Nottingham. All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable. Yes Computational code relevant to the current manuscript will be made freely available and is available on request.
更多
查看译文
关键词
mr spectroscopy,rf,calibration-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要