High-voltage all-solid-state lithium metal batteries prepared by aerosol deposition

Journal of the European Ceramic Society(2023)

引用 1|浏览15
暂无评分
摘要
High-energy-density and safe rechargeable batteries are key components to realizing a low-carbon society. All-solid-state Li-metal batteries have the potential to achieve both high safety and high energy densities. However, the large interfacial resistance between solid electrolytes and cathodes is the major challenge for developing all-solid-state Li-metal batteries. Here we deposited a Li-rich layered metal oxide Li1.2Mn0.54Ni0.13Co0.13O2 (LMNC) thin film (6 µm thick) on an Al-doped Li7La3Zr2O12 (LLZO) substrate at room temperature by aerosol deposition. The LMNC particles were coated with Li3BO3 (LBO), which acted as a binder to hold LMNC and LLZO together at heating. As a result, good interfacial contact was achieved between LMNC and LLZO. Yet reactions between LMNC and LBO would occur at heat treatment temperatures above 600 °C. The highest discharge capacity of the all-solid-state Li/LLZO/LBO-LMNC cell at 0.1 C and 60 °C was 223 mAh g-1. The main reason for the cell capacity decay was the cracking of the LBO-LMNC cathode layer during cycling. Searching for a more suitable binder material with a high fracture toughness is crucial for further developing the aerosol-deposited LLZO-based all-solid-state Li metal batteries.
更多
查看译文
关键词
Li7La3Zr2O12,Li-rich layered oxide cathode,Interfacial resistance,Aerosol deposition,All-solid-state Li metal batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要