Phase I/II study testing the combination of AGuIX nanoparticles with radiochemotherapy and concomitant temozolomide in patients with newly diagnosed glioblastoma (NANO-GBM trial protocol)

BMC cancer(2023)

引用 3|浏览15
暂无评分
摘要
Background Despite standard treatments including chemoradiotherapy with temozolomide (TMZ) (STUPP protocol), the prognosis of glioblastoma patients remains poor. AGuIX nanoparticles have a high radiosensitizing potential, a selective and long-lasting accumulation in tumors and a rapid renal elimination. Their therapeutic effect has been proven in vivo on several tumor models, including glioblastoma with a potential synergetic effect when combined with TMZ based chemoradiotherapy, and they are currently evaluated in 4 ongoing Phase Ib and II clinical trials in 4 indications (brain metastases, lung, pancreatic and cervix cancers) (> 100 patients received AGuIX). Thus, they could offer new perspectives for patients with newly diagnosed glioblastoma. The aim of this study is to determine the recommended dose of AGuIX as a radiosensitizer in combination with radiotherapy and TMZ during the concurrent radio-chemotherapy period for phase II (RP2D) and to estimate the efficacy of the combination. Methods NANO-GBM is a multicenter, phase I/II, randomized, open-label, non-comparative, therapeutic trial. According to a dose escalation scheme driven by a TITE-CRM design, 3 dose levels of AGuIX (50, 75 and 100 mg/kg) will be tested in phase I added to standard concomitant radio-chemotherapy. Patients with grade IV glioblastoma, not operated or partially operated, with a KPS ≥ 70% will be eligible for the study. The primary endpoints are i) for phase I, the RP2D of AGuIX, with DLT defined as any grade 3–4 NCI-CTCAE toxicity and ii) for phase II, the 6-month progression-free survival rate. The pharmacokinetics, distribution of nanoparticles, tolerance of the combination, neurological status, overall survival (median, 6-month and 12-month rates), response to treatment, and progression-free survival (median and 12-month rates) will be assessed as secondary objectives. Maximum sixty-six patients are expected to be recruited in the study from 6 sites. Discussion The use of AGuIX nanoparticles could allow to overpass the radioresistance to the reference treatment of newly diagnosed glioblastomas that have the poorest prognosis (incomplete resection or biopsy only). Trial registration Clinicaltrials.gov: NCT04881032 , registered on April 30, 2021. Identifier with the French National Agency for the Safety of Medicines and Health Products (ANSM): N°Eudra CT 2020-004552-15. Protocol: version 3, 23 May 2022.
更多
查看译文
关键词
AGuIX,Glioblastoma,Nanomedicine,Nanoparticles,Radiosensitization,Radiotherapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要