谷歌浏览器插件
订阅小程序
在清言上使用

Polymerization Force-Regulated Actin Filament-Arp2/3 Complex Interaction Dominates Self-Adaptive Cell Migrations

Proceedings of the National Academy of Sciences(2023)

引用 1|浏览14
暂无评分
摘要
Cells migrate by adapting their leading-edge behaviours to heterogeneous extracellular microenvironments (ECMs) during cancer invasions and immune responses. Yet it remains poorly understood how such complicated dynamic behaviours emerge from millisecond-scale assembling activities of protein molecules, which are hard to probe experimentally. To address this gap, we established a spatiotemporal “resistance-adaptive propulsion” theory based on the protein interactions between Arp2/3 complexes and polymerizing actin filaments, and a multiscale dynamic modelling system spanning from molecular proteins to the cell. Combining spatiotemporal simulations with experiments, we quantitatively find that cells can accurately self-adapt propulsive forces to overcome heterogeneous ECMs via a resistance-triggered positive feedback mechanism, dominated by polymerization-induced actin filament bending and the bending-regulated actin-Arp2/3 binding. However, for high resistance regions, resistance triggered a negative feedback, hindering branched filament assembly, which adapts cellular morphologies to circumnavigate the obstacles. Strikingly, the synergy of the two opposite feedbacks not only empowers cells with both powerful and flexible migratory capabilities to deal with complex ECMs, but also endows cells to use their intracellular proteins efficiently. In addition, we identify that the nature of cell migration velocity depending on ECM history stems from the inherent temporal hysteresis of cytoskeleton remodelling. We also quantitatively show that directional cell migration is dictated by the competition between the local stiffness of ECMs and the local polymerizing rate of actin network caused by chemotactic cues. Our results reveal that it is the polymerization force-regulated actin filament-Arp2/3 complex binding interaction that dominates self-adaptive cell migrations in complex ECMs, and we provide a predictive theory and a spatiotemporal multiscale modelling system at the protein level.
更多
查看译文
关键词
Cell Migration,Extracellular Matrix,Cell Mechanics,Bacterial Motion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要