Pixel-to-pixel Translation of Solar Extreme-ultraviolet Images for DEMs by Fully Connected Networks

The Astrophysical Journal Supplement Series(2023)

引用 0|浏览12
暂无评分
摘要
In this study, we suggest a pixel-to-pixel image translation method among similar types of filtergrams such as solar extreme-ultraviolet (EUV) images. For this, we consider a deep-learning model based on a fully connected network in which all pixels of solar EUV images are independent of one another. We use six-EUV-channel data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), of which three channels (17.1, 19.3, and 21.1 nm) are used as the input data and the remaining three channels (9.4, 13.1, and 33.5 nm) as the target data. We apply our model to representative solar structures (coronal loops inside of the solar disk and above the limb, coronal bright point, and coronal hole) in SDO/AIA data and then determine differential emission measures (DEMs). Our results from this study are as follows. First, our model generates three EUV channels (9.4, 13.1, and 33.5 nm) with average correlation coefficient values of 0.78, 0.89, and 0.85, respectively. Second, our model generates the solar EUV data with no boundary effects and clearer identification of small structures when compared to a convolutional neural network–based deep-learning model. Third, the estimated DEMs from AI-generated data by our model are consistent with those using only SDO/AIA channel data. Fourth, for a region in the coronal hole, the estimated DEMs from AI-generated data by our model are more consistent with those from the 50 frames stacked SDO/AIA data than those from the single-frame SDO/AIA data.
更多
查看译文
关键词
The Sun,Solar instruments,Solar atmosphere,Solar extreme ultraviolet emission,Neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要