The role of mass and environment in the build up of the quenched galaxy population since cosmic noon

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 0|浏览25
暂无评分
摘要
We conduct the first study of how the relative quenching probability of galaxies depends on environment over the redshift range $0.5 < z < 3$, using data from the UKIDSS Ultra-Deep Survey. By constructing the stellar mass functions for quiescent and post-starburst (PSB) galaxies in high, medium and low density environments to $z = 3$, we find an excess of quenched galaxies in dense environments out to at least $z \sim 2$. Using the growth rate in the number of quenched galaxies, combined with the star-forming galaxy mass function, we calculate the probability that a given star-forming galaxy is quenched per unit time. We find a significantly higher quenching rate in dense environments (at a given stellar mass) at all redshifts. Massive galaxies (M$_* > 10^{10.7}$ M$_{\odot}$) are on average 1.7 $\pm$ 0.2 times more likely to quench per Gyr in the densest third of environments compared to the sparsest third. Finally, we compare the quiescent galaxy growth rate to the rate at which galaxies pass through a PSB phase. Assuming a visibility timescale of 500 Myr, we find that the PSB route can explain $\sim$ 50\% of the growth in the quiescent population at high stellar mass (M$_* > 10^{10.7}$ M$_{\odot}$) in the redshift range $0.5 < z < 3$, and potentially all of the growth at lower stellar masses.
更多
查看译文
关键词
galaxies: evolution, galaxies: formation, galaxies: high-redshift, galaxies: luminosity function, mass function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要