Human amniotic mesenchymal stem cell-conditioned medium inhibited LPS-induced cell injury and inflammation by modulating CD14/TLR4-mediated signaling pathway in monocytes

Molecular Immunology(2023)

引用 1|浏览7
暂无评分
摘要
Human amniotic mesenchymal stem cells (hAMSCs) have attracted considerable attention as a promising regenerative therapy. Many studies reported that the conditioned medium of hAMSCs (AM-CM) exerted anti-inflammatory and immunomodulatory functions, while its underlying mechanism is poorly understood. In this study, we first confirmed that AM-CM (25%, 50%, 100%) was optimal for anti-inflammation at 24 h. Lipopolysaccharide (LPS)-induced alteration of cell morphology, the decrease of cell proliferation, and the upregulation of cell apoptosis were significantly reversed in AM-CM-treated THP-1 cells. 25% and 50% AM-CM significantly decreased LPS-induced intracellular reactive oxygen species (ROS) production and proinflammatory cytokines secretion. Mechanistically, we found that AM-CM treatment suppressed LPS-induced activation of MAPK and NF-κB pathways by inhibiting CD14/TLR4 in THP-1 cells. Meanwhile, activation of NLRP3 inflammasome was also dose-dependently attenuated by AM-CM treatment. Thus, AM-CM may exert positive influences on the inflammation microenvironment and provide a novel strategy for improving tissue regeneration.
更多
查看译文
关键词
CD14/TLR4,Conditioned medium,Human amniotic mesenchymal stem cells,Inflammation,LPS,Monocytes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要