FUT1-mediated terminal fucosylation acts as a new target to attenuate renal fibrosis

Molecular medicine (Cambridge, Mass.)(2023)

引用 0|浏览2
暂无评分
摘要
Backgrounds Renal fibrosis is a common pathologic process of most chronic kidney diseases (CKDs), becoming one of the major public health problems worldwide. Terminal fucosylation plays an important role in physiological homeostasis and pathological development. The present study aimed to explore the role of terminal fucosylation during kidney fibrogenesis and propose a possible anti-fibrosis treatment via suppressing aberrant terminal fucosylation. Methods We investigated the expression level of fucosyltransferase1 (FUT1) in CKD patients by using public database. Then, we further confirmed the level of terminal fucosylation by UEA-I staining and FUT1 expression in unilateral ureteral obstruction (UUO)-induced renal fibrosis mice. Immunostaining, qPCR, western blotting and wound healing assay were applied to reveal the effect of FUT1 overexpression in human kidney proximal tubular epithelial cell (HK-2). What’s more, we applied terminal fucosylation inhibitor, 2-Deoxy-D-galactose (2-D-gal), to determine whether suppressing terminal fucosylation ameliorates renal fibrosis progression in vitro and in vivo. Results Here, we found that the expression of FUT1 significantly increased during renal fibrosis. In vitro experiments showed upregulation of epithelial-mesenchymal transition (EMT) after over-expression of FUT1 in HK-2. Furthermore, in vivo and in vitro experiments indicated that suppression of terminal fucosylation, especially on TGF-βR I and II, could alleviate fibrogenesis via inhibiting transforming growth factor-β (TGF-β)/Smad signaling. Conclusions The development of kidney fibrosis is attributed to FUT1-mediated terminal fucosylation, shedding light on the inhibition of terminal fucosylation as a potential therapeutic treatment against renal fibrosis.
更多
查看译文
关键词
2-D-gal,EMT,Renal fibrosis,TGF-β/Smad signaling,Terminal fucosylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要