谷歌浏览器插件
订阅小程序
在清言上使用

Biomechanical Analysis of Miniplate Fixation Systems in Restorative Laminoplasty for Spinal Canal Reconstruction

Nan fang yi ke da xue xue bao = Journal of Southern Medical University(2023)

引用 0|浏览17
暂无评分
摘要
OBJECTIVE:To investigate the biomechanical properties of H-shaped and L-shaped miniplate fixation systems (H-MFS and L-MFS, respectively) in restorative laminoplasty for spinal canal reconstruction (RL-SCR). METHODS:Laminectomy was performed in a 3D printed L4 vertebral model followed by RL-SCR using H-MFS or L-MFS, and the biomechanical properties of the reconstructed models were evaluated using static and dynamic compression tests. Biomechanical analyses of RL-SCR were also conducted in finite element models of the L3-L5 vertebrae with normal assignment (NA), laminectomy, or fixation with H-MFS or L-MFS, and the range of motion (ROM) of L3-L4 and L4-L5 was evaluated. RESULTS:In static compression test, the sustained yield load, compression stiffness, yield displacement and axial displacement- axial load were all significantly greater in H-MFS group (P < 0.05). Door closing, lamina collapse and plate breakage occurred in all the models in L-MFS group, and only some models in H-MFS group showed plate cracks and screw loosening. In dynamic compression tests, the peak load in H-MFS group reached 873 N (which was 95% of the average yield load in static compression), significantly greater than that in L-MFS group (P < 0.05). The ultimate load in L-MFS group was only 46.59% of that in H-MFS group (P>0.05). In finite element analysis, the ROM of the L3-L4 and L4- L5 segments were significantly smaller in NA, H-MFS and L-MFS groups than in laminectomy group. Compared with NA group, H-MFS group showed a greater ROM during extension, and L-MFS group showed greater ROM in flexion, extension, bending, and rotation; The overall ROM of the vertebral segments decreased in the order of laminectomy group, L-MFS group, H-MFS group, and NA group. CONCLUSION:Laminectomy causes structural destruction of the posterior column of the spine to affect its biomechanical stability. RL-SCR can effectively maintain the biomechanical stability of the spine, and H-MFS is superior to L-MFS in maintaining the integrity and biomechanical properties of the reconstructed spinal canal.
更多
查看译文
关键词
Laminoplasty
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要