谷歌浏览器插件
订阅小程序
在清言上使用

A and B Sites Dual Substitution by Na+ and Cu2+ Co-Doping in CsPbBr3 Quantum Dots to Achieve Bright and Stable Blue Light Emitting Diodes.

Spectrochimica acta Part A, Molecular and biomolecular spectroscopy(2023)

引用 3|浏览17
暂无评分
摘要
Light-emitting perovskite quantum dots (PeQDs) are extensively investigated owing to their evident merits. However, it is still a challenge to adjust their intrinsic emissions and enhance their thermal stability to achieve full-color highly emissive QD-based light-emitting diodes (QLEDs), especially blue QLEDs. Herein, we demonstrate an effective strategy to fundamentally stabilize the crystal structure of CsPbBr3 QDs by codoping Na+ and Cu2+ ions, which are designed to substitute Cs+ (A sites) and Pb2+ (B sites), respectively. It is found out that the codoping metal ions have significantly improved the thermal stability and the optical properties of the QDs. 40% of the emission intensity can be remained after 8 thermal cycles (20-120(degrees) C) for CsPbBr3: Na+/Cu2+ QDs, whilst less than 10% is maintained for undoped CsPbBr3 QDs. Accordingly, stable blue QLEDs are packed by CsPbBr3: Na+/Cu2+ QDs. Strong electroluminescence with the maximum luminance of 7161 cd m(- 2) and low turn-on voltage of 2.4 V are realized. The CIE coordinates are tuned from green (0.10, 0.74) to blue (0.17, 0.25) via Na+ and Cu2+ codoping. The maximum external quantum efficiency (EQEmax) is obtained as 4.52% for PeLEDs based on codoped QDs. The proposed metal ions A and B sites dual substitution strategy guarantees PeQDs as an extremely promising prospect in potential applications as high-resolution displays and high-quality lightings.
更多
查看译文
关键词
CsPbBr (3 )perovskite QDs,Doping,Optical performance,Thermal stability,Light-emitting diodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要