Reduced basis surrogates for quantum spin systems based on tensor networks
Physical review. E(2023)
摘要
Within the reduced basis methods approach, an effective low-dimensional subspace of a quantum many-body Hilbert space is constructed in order to investigate, e.g., the ground-state phase diagram. The basis of this subspace is built from solutions of snapshots, i.e., ground states corresponding to particular and well-chosen parameter values. Here, we show how a greedy strategy to assemble the reduced basis and thus to select the parameter points can be implemented based on matrix-product-state calculations. Once the reduced basis has been obtained, observables required for the computation of phase diagrams can be computed with a computational complexity independent of the underlying Hilbert space for any parameter value. We illustrate the efficiency and accuracy of this approach for different one-dimensional quantum spin-1 models, including anisotropic as well as biquadratic exchange interactions, leading to rich quantum phase diagrams.
更多查看译文
关键词
quantum spin systems,basis surrogates,tensor networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要