Extragalactic FXT Candidates Discovered by Chandra (2014-2022)

J. Quirola-Vásquez,F. E. Bauer, P. G. Jonker,W. N. Brandt,G. Yang, A. J. Levan, Y. Q. Xue,D. Eappachen, E. Camacho, M. E. Ravasio, X. C. Zheng, B. Luo

arXiv (Cornell University)(2023)

引用 0|浏览30
暂无评分
摘要
Extragalactic fast X-ray transients (FXTs) are short flashes of X-ray photons of unknown origin that last a few minutes to hours. We extend the search for extragalactic FXTs from Quirola et al. 2022 (Paper I; based on sources in the Chandra Source Catalog 2.0, CSC2) to further Chandra archival data between 2014-2022. We extract X-ray data using a method similar to that employed by CSC2 and apply identical search criteria as in Paper I. We report the detection of eight FXT candidates, with peak 0.3-10 keV fluxes between 1$\times$10$^{-13}$ to 1$\times$10$^{-11}$ erg cm$^{-2}$ s$^{-1}$ and $T_{90}$ values from 0.3 to 12.1 ks. This sample of FXTs has likely redshifts between 0.7 to 1.8. Three FXT candidates exhibit light curves with a plateau (${\approx}$1-3 ks duration) followed by a power-law decay and X-ray spectral softening, similar to what was observed for a few previously reported FXTs in Paper I. In light of the new, expanded source lists (eight FXTs with known redshifts from Paper I and this work), we update the event sky rates derived in Paper I, finding 36.9$_{-8.3}^{+9.7}$ deg$^{-2}$ yr$^{-1}$ for the extragalactic samples for a limiting flux of ${\gtrsim}$1${\times}$10$^{-13}$ erg cm$^{-2}$ s$^{-1}$, calculate the first FXT X-ray luminosity function, and compare the volumetric density rate between FXTs and other transient classes. Our latest Chandra-detected extragalactic FXT candidates boost the total Chandra sample by $\sim$50 %, and appear to have a similar diversity of possible progenitors.
更多
查看译文
关键词
extragalactic fxt candidates,chandra
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要