Do SSL Models Have D\'ej\`a Vu? A Case of Unintended Memorization in Self-supervised Learning

arxiv(2023)

引用 0|浏览112
暂无评分
摘要
Self-supervised learning (SSL) algorithms can produce useful image representations by learning to associate different parts of natural images with one another. However, when taken to the extreme, SSL models can unintendedly memorize specific parts in individual training samples rather than learning semantically meaningful associations. In this work, we perform a systematic study of the unintended memorization of image-specific information in SSL models -- which we refer to as d\'ej\`a vu memorization. Concretely, we show that given the trained model and a crop of a training image containing only the background (e.g., water, sky, grass), it is possible to infer the foreground object with high accuracy or even visually reconstruct it. Furthermore, we show that d\'ej\`a vu memorization is common to different SSL algorithms, is exacerbated by certain design choices, and cannot be detected by conventional techniques for evaluating representation quality. Our study of d\'ej\`a vu memorization reveals previously unknown privacy risks in SSL models, as well as suggests potential practical mitigation strategies. Code is available at https://github.com/facebookresearch/DejaVu.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要