Laboratory-Based Correlative Soft X-ray and Fluorescence Microscopy in an Integrated Setup

MICROSCOPY AND MICROANALYSIS(2023)

引用 0|浏览19
暂无评分
摘要
Correlative microscopy is a powerful technique that combines the advantages of multiple imaging modalities to achieve a comprehensive understanding of investigated samples. For example, fluorescence microscopy provides unique functional contrast by imaging only specifically labeled components, especially in biological samples. However, the achievable structural information on the sample in its full complexity is limited. Here, the intrinsic label-free carbon contrast of water window soft X-ray microscopy can complement fluorescence images in a correlative approach ultimately combining nanoscale structural resolution with functional contrast. However, soft X-ray microscopes are complex and elaborate, and are usually installed on large-scale synchrotron radiation sources due to the demanding photon flux requirements. Yet, with modern high-power lasers it has become possible to generate sufficient photon flux from laser-produced plasmas, thus enabling laboratory-based setups. Here, we present a compact table-top soft X-ray microscope with an integrated epifluorescence modality for "in situ" correlative imaging. Samples remain in place when switching between modalities, ensuring identical measurement conditions and avoiding sample alteration or destruction. We demonstrate our new method by multimodal images of several exemplary samples ranging from nanoparticles to various multicolor labeled cell types. A structural resolution of down to 50 nm was reached.
更多
查看译文
关键词
cell imaging,correlative microscopy,fluorescence microscopy,laboratory-based,laser-produced plasma,water window X-ray microscopy,zone plates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要