Chrome Extension
WeChat Mini Program
Use on ChatGLM

Quantifying the Autonomic Nervous System Influence on Heart Rate Turbulence Using Partial Least Squares Path Modeling.

CinC(2022)

Department of Signal Theory and Communications | Department of Internal Medicine

Cited 0|Views18
Abstract
Heart rate turbulence (HRT) is a physiological phenomenon used for cardiac risk stratification. Its alteration or absence indicates a significantly increased likelihood of mortality. However, the influence of the autonomic nervous system (ANS) on HRT needs to be further investigated. We propose a cause-effect relationship model to quantify the influence of the ANS. A set of 481 Holter-monitor recordings from different medical conditions were used, from THEW· acute myocardial infarction, coronary artery disease and end-stage renal disease. We proposed to model the relationship between HRT and ANS using Partial Least Squares Path Modeling (PLS-PM), a method for structural equation modeling that allows analyzing the relationships between the observed data and the latent variables. HRT parameters were estimated on individual ventricular premature complex (VPC) tachograms. ANS was assessed by heart rate variability indices computed from 3-min before VPC tachograms. The data set was split into low-risk and high-risk subgroups. SDN N, P LP , TS and TO were the most relevant variables. In low-risk, ANS activity was negatively related to HRT, while correlation between coupling interval and HRT on high-risk depends on the pathology. PLS-PM suggests that the influence of physiological variables on HRT is broken on high-risk. Results of the model are in agreement with the baroreflex hypothesis.
More
Translated text
Key words
acute myocardial infarction,autonomic nervous system influence,cardiac risk stratification,coronary artery disease,end-stage renal disease,heart rate turbulence,heart rate variability indices,Holter-monitor recordings,HRT parameters,partial least squares path modeling,physiological phenomenon,physiological variables,structural equation modeling,ventricular premature complex tachograms
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
2005

被引用9177 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest