Implementation of chemistry in the Athena++ code

The Astrophysical Journal Supplement Series(2023)

引用 1|浏览13
暂无评分
摘要
Chemistry plays a key role in many aspects of astrophysical fluids. Atoms and molecules are agents for heating and cooling, determine the ionization fraction, serve as observational tracers, and build the molecular foundation of life. We present the implementation of a chemistry module in the publicly available magneto-hydrodynamic code Athena++. We implement several chemical networks and heating and cooling processes suitable for simulating the interstellar medium (ISM). A general chemical network framework in the KIDA format is also included, allowing the user to easily implement their own chemistry. Radiation transfer and cosmic-ray ionization are coupled with chemistry and solved with the simple six-ray approximation. The chemical and thermal processes are evolved as a system of coupled ODEs with an implicit solver from the CVODE library. We perform and present a series of tests to ensure the numerical accuracy and convergence of the code. Many tests combine chemistry with gas dynamics, including comparisons with analytic solutions, 1D problems of the photo-dissociation regions and shocks, and realistic 3D simulations of the turbulent ISM. We release the code with the new public version of Athena++, aiming to provide a robust and flexible code for the astrochemical simulation community.
更多
查看译文
关键词
chemistry,implementation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要