Bi/Bi3Se4 nanoparticles embedded in hollow porous carbon nanorod: High rate capability material for potassium-ion batteries

JOURNAL OF ENERGY CHEMISTRY(2023)

引用 6|浏览8
暂无评分
摘要
Considering their superior theoretical capacity and low voltage plateau, bismuth (Bi)-based materials are being widely explored for application in potassium-ion batteries (PIBs). Unfortunately, pure Bi and Bi-based compounds suffer from severe electrochemical polarization, agglomeration, and dramatic volume fluctuations. To develop an advanced bismuth-based anode material with high reactivity and durability, in this work, the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure, in which Bi/Bi3Se4 nanoparticles are encapsulated in carbon nanorods (Bi/Bi3Se4@CNR). Applied as the anode material of PIBs, the Bi/Bi3Se4@CNR displays fast potassium storage capability with 307.5 mA h g(-1) at 20 A g(-1) and durable cycle performance of 2000 cycles at 5 A g(-1). Notably, the Bi/ Bi3Se4@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material, which further demonstrates its promising potential in the field of PIBs. Additionally, the dual potassium storage mechanism of the Bi/Bi3Se4@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction. (C) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
更多
查看译文
关键词
Bi3Se4,Potassium ion battery,Hollow porous carbon rod,Conversion-alloying mechanism,Bi MOF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要