Hierarchical 2D MnO2@1D mesoporous NiTiO3 core-shell hybrid structures for high-performance supercapattery electrodes: Theoretical and experimental investigations

JOURNAL OF ELECTROANALYTICAL CHEMISTRY(2023)

引用 6|浏览8
暂无评分
摘要
Novel hybrid core-shell electrodes of 2D and 1D nanomaterials have the ability to effectively address the rel-atively lower specific energy of supercapacitors. Herein, we report the utilization of the core-shell structure of hierarchical 2D Manganese Dioxide (MnO2) nanoflakes and 1D Nickel Titanate (NiTiO3) (NTO) mesoporous rods as an efficient supercapacitor electrode providing an enormous surface area and more pathways for OH- ions diffusion. The two-step-chemically processed hybrid porous core-shell hetero-architecture of MnO2@NTO delivers a specific capacitance of 1054.7 F/g, specific power of 11879.87 W/kg, and specific energy of 36.23 Wh/kg. Furthermore, 85.3 % retention in capacitance is perceived after 5000 cycles without degradation in the surface morphological features. Complementary first principles density functional theory (DFT) calculations reveal synergistic interaction of MnO2 with NTO in the MnO2@NTO heterostructure, which improves the electrical conductivity.
更多
查看译文
关键词
Core-shell,hetero-architecture,NiTiO3,MnO2,Supercapacitor,DFT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要