Heat-Resistant and Color-Changing Luminescent Polysulfone for Information Encryption and Fire Alarming

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 2|浏览15
暂无评分
摘要
An intrinsic difficulty with thermally responsive photoluminescent materials is that high temperatures usually destroy luminance due to the notorious thermal quenching effect. Limited by the vulnerable chemical structure and soft skeleton, most of the existing photoluminescent responsive materials fail to indicate or work at a surging temperature over 100 degrees C, thus limiting application in display and alarming in harsh conditions. Herein, enlightened by chameleon's adaptive nature to external stimulus, we introduce a topologically optimized electron donor-acceptor (DA) structure and supramolecular interactions of lanthanide ions into the polymer backbone. The emission color determined by the DA structure is stable at high temperatures, and metal-ligand interaction phosphorescence is temperature-adjustable. Owing to the excellent reproducibility and heat resistance of composite films, the sensors can be bent into different three-dimensional structures and adhered to metal surfaces as flexible thermometers with superior display resolution. The polymer composite film could be directly applied as a photoluminescent quick response (QR) code, with patterns simultaneously variable to a temperature from 30 to 150 degrees C free of manual operation. More importantly, the polymeric composite could be in-situ-oxidized to a "sulfone" structure with an enhanced glass transition temperature of 297-304 degrees C. The heat- and flame-resistant characteristics of the oxidized films give rise to the application of fire alarming devices since it can locate the fire source and respond exactly depending on the distance from the fire. The unique display, encryption, and alarming functions of the polymeric composite studied in this work bring forward a new concept of developing a great information security and disaster monitoring system with the application of temperature-responsive materials.
更多
查看译文
关键词
heat-resistant,metal-ligand interaction,donor-acceptor structure,information encryption,fire alarming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要