Photoluminescent Si/SiO2 Core/Shell Quantum Dots Prepared by High-Pressure Water Vapor Annealing for Solar Concentrators, Light-Emitting Devices, and Bioimaging

ACS APPLIED NANO MATERIALS(2023)

引用 2|浏览6
暂无评分
摘要
As non-toxic, elementally abundant, and low-cost lumino-phores, silicon quantum dots (Si QDs) suit a wide variety of applications, from luminescent devices, such as solar concentrators and light-emitting diodes, to bioimaging. Nonthermal plasma-assisted decomposition of silane gas is an efficient, relatively sustainable, and controllable method for synthesizing Si QDs. However, as-synthesized Si QDs have a high defect density and require additional passivation for utilization in these settings. Liquid-based passivation methods, such as thermal hydrosilylation, organically cap Si QDs but cannot prevent oxidation upon exposure to ambient air. Native oxidation effectively passivates the Si QDs and ensures long-term stability in air but typically requires long exposures to ambient conditions. Here, we report the use of high-pressure water vapor annealing (HWA) to quickly obtain Si/SiO2 core/shell quantum dots with tunable photoluminescence (PL). We first show that the injection of additional hydrogen gas, commonly used in synthesizing organically capped Si QDs, is detrimental to achieving stable silica shells. Then, we demonstrate that varying the applied pressure tunes the PL quantum yield. At higher pressures, the formed silica shells are fully thermally relaxed. Lastly, we report the influence of silica shell thickness, with thicker silica shells leading to environmentally stable quantum yields of >40%. Compared to both thermal hydrosilylation and native oxidation, HWA is a convenient and rapid technique for surface passivation.
更多
查看译文
关键词
high-pressure water vapor annealing (HWA),silicon quantum dots,silicon oxide,quantum yield,photoluminescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要