Deepening Insights into Aggregation Effect of Intermolecular Charge-Transfer Aggregates for Highly Efficient Near-Infrared Non-Doped Organic Light-Emitting Diodes over 780 nm

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 2|浏览11
暂无评分
摘要
Though urgently needed, high-efficiency near-infrared (NIR) organic light-emitting diode (OLED) is still rare due to the energy-gap law. Formation of intermolecular charge-transfer aggregates (CTA) with nonadiabatic coupling suppression can decelerate non-radiative decay rates for high-efficiency NIR-OLEDs. However, the aggregation effect of CTA is still not fully understood, which limits the rational design of CTA. Herein, two CTA molecules with a same pi-framework but different terminal substituents are developed to unveil the aggregation effect. In highly ordered crystalline states, the terminal substituents substantially affect the molecular packing motifs and intermolecular charge-transfer states, thus leading to distinct photophysical properties. In comparison, in amorphous states, these two CTA demonstrate similar photophysical behaviors and properties due to their similar molecular packing and intermolecular interactions as evidenced by molecular dynamics simulations. Importantly, the formations of amorphous CTA trigger multifunction improvements such as aggregation-induced NIR emission, aggregation-induced thermally activated delayed fluorescence, self-doping and self-host features. The non-doped OLEDs demonstrate NIR emissions centered at 788 and 803 nm, and high maximum external quantum efficiencies of 2.6% and 1.5% with small efficiency roll-off, respectively. This study provides deeper insight into the aggregation effect of CTA and lays a foundation for the development of high-efficiency NIR non-doped OLEDs.
更多
查看译文
关键词
intermolecular charge-transfer, molecular aggregates, near-infrared emission, organic light-emitting diodes, thermally activated delayed fluorescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要