Photocatalytic CO2 Reduction to CH4 and Dye Degradation Using Bismuth Oxychloride/Bismuth Oxyiodide/Graphitic Carbon Nitride (BiOmCln/BiOpIq/g-C3N4) Nanocomposite with Enhanced Visible-Light Photocatalytic Activity

CATALYSTS(2023)

引用 8|浏览7
暂无评分
摘要
The use of visible-light-driven photocatalysts in wastewater treatment, photoreduction of CO2, green solar fuels, and solar cells has elicited substantial research attention. Bismuth oxyhalide and its derivatives are a group of visible-light photocatalysts that can diminish electron-hole recombination in layered structures and boost photocatalytic activity. The energy bandgap of these photocatalysts lies in the range of visible light. A simple hydrothermal method was applied to fabricate a series of bismuth oxychloride/bismuth oxyiodide/grafted graphitic carbon nitride (BiOmCln/BiOpIq/g-C3N4) sheets with different contents of g-C3N4. The fabricated sheets were characterized through XRD, TEM, SEM-EDS, XPS, UV-vis DRS, PL, and BET. The conversion efficiency of CO2 reduction to CH4 of BiOmCln/BiOpIq of 4.09 mu mol g(-1) can be increased to 39.43 mu mol g(-1) by compositing with g-C3N4. It had an approximately 9.64 times improvement. The photodegradation rate constant for crystal violet (CV) dye of BiOmCln/BiOpIq of k = 0.0684 can be increased to 0.2456 by compositing with g-C3N4. It had an approximately 3.6 times improvement. The electron paramagnetic resonance results and the quenching effects indicated that O-1(2), center dot OH, h(+), and center dot O-2(-) were active species in the aforementioned photocatalytic degradation. Because of their heterojunction, the prepared ternary nanocomposites possessed the characteristics of a heterojunction of type II band alignment.
更多
查看译文
关键词
composites, photocatalysis, BiOmCln, BiOpBrq, g-C3N4, CO2 reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要