Crushing Responses of Expanded Polypropylene Foam

Polymers(2023)

引用 3|浏览10
暂无评分
摘要
This paper aimed to experimentally clarify the crushing mechanism and performance of expanded polypropylene foam (EPP) and analyze the influence of density and thickness on its mechanical behavior and energy absorption properties under static crushing loadings. Hence, a series of compression tests were carried out on EPP foams with different densities and thicknesses. For foam with a density of 60 kg/m3, the mean crushing strength, energy absorption (Ea), energy absorption efficiency (Ef), specific energy absorption (SEA), and energy absorption per unit volume (w) increased by 245.3%, 187.2%, 42.3%, 54.3%, and 242.8%, respectively, compared to foam with a density of 20 kg/m3. Meanwhile, compared to foam with a thickness of 30 mm, the mean crushing strength, energy absorption (Ea), energy absorption efficiency (Ef), SEA, and energy absorption per unit volume (w) for foam with a thickness of 75 mm increased by 53.3%, 25.2%, −10.8%, −4.7%, and −10.6%, respectively. The results show that foam density has a significantly greater influence on static compressive performance than foam thickness. The microstructures of the EPP foam before and after static compression were compared by observing with a scanning electron microscope (SEM), and the failure mechanism was analyzed. Results showed that the load and energy as well as the deformation and instability processes of its cells were transferred layer by layer. The influence of density on the degree of destruction of the internal cells was obvious. Due to its larger mass and larger internal damping, thicker foams were less damaged, and less deformation was produced. Additionally, the EPP foam exhibited a considerable ability to recover after compression.
更多
查看译文
关键词
polypropylene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要