Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours

Nature Nanotechnology(2023)

引用 7|浏览39
暂无评分
摘要
Adoptive T-cell therapy against solid tumours is limited by the apoptosis resistance mechanisms of tumour cells and by the extracellular, immunosuppressive tumour microenvironment. Here we report a temperature-sensitive genome-editing nanodevice that can deliver a Cas9 editor with an external trigger which can be used to edit the genome of tumour cells to reduce resistance to apoptosis and modulate the tumour microenvironment via a mild heating trigger. After local or systemic delivery of Cas9, mild heating is induced by non-invasive near-infrared (NIR) light or focused ultrasound (FUS) to activate Cas9, which initiates simultaneous genome editing of HSP70 ( HSPA1A ) and BAG3 in tumour cells. This disrupts the apoptotic resistance machinery of the tumour cells against adoptive T cells. At the same time, an NIR- or FUS-induced mild thermal effect reshapes the extracellular tumour microenvironment by disrupting the physical barriers and immune suppression. This facilitates the infiltration of adoptive T cells and enhances their therapeutic activity. Mild thermal Cas9 delivery is demonstrated in different murine tumour models which mimic a range of clinical indications, including a tumour model based on humanized patient-derived xenografts. As a result, the non-invasive thermal delivery of Cas9 significantly enhances the therapeutic efficacies of tumour-infiltrating lymphocytes and chimeric antigen receptor T and shows potential for clinical application.
更多
查看译文
关键词
Drug delivery,Nanotechnology in cancer,Materials Science,general,Nanotechnology,Nanotechnology and Microengineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要