谷歌浏览器插件
订阅小程序
在清言上使用

Eliminating Redox-Mediated Electron Transfer Mechanisms on a Supported Molecular Catalyst Enables CO2 Conversion to Ethanol

Maryam Abdinejad, Amirhossein Farzi, Robin Möller-Gulland, Fokko Mulder, Chengyu Liu, Junming Shao, Jasper Biemolt, Marc Robert, Ali Seifitokaldani, Thomas Burdyny

Nature Catalysis(2024)

引用 0|浏览1
暂无评分
摘要
Molecular catalysts play a significant role in chemical transformations, utilizing changes in redox states to facilitate reactions. To date molecular electrocatalysts have efficiently produced single-carbon products from CO2 but have struggled to achieve a carbon–carbon coupling step. Conversely, copper catalysts can enable carbon–carbon coupling, but lead to broad C2+ product spectra. Here we subvert the traditional redox-mediated reaction mechanisms of organometallic compounds through a heterogeneous nickel-supported iron tetraphenylporphyrin electrocatalyst, facilitating electrochemical carbon–carbon coupling to produce ethanol. This represents a marked behavioural shift compared with carbon-supported metalloporphyrins. Extending the approach to a three-dimensional porous nickel support with adsorbed iron tetraphenylporphyrin, we attain ethanol Faradaic efficiencies of 68% ± 3.2% at −0.3 V versus a reversible hydrogen electrode (pH 7.7) with partial ethanol current densities of −21 mA cm−2. Separately we demonstrate maintained ethanol production over 60 h of operation. Further consideration of the wide parameter space of molecular catalyst and metal electrodes shows promise for additional chemistries and achievable metrics. The electrochemical reduction of CO2 on organometallic catalysts is commonly limited to two-electron products. Now, an iron tetraphenylporphyrin catalyst immobilized onto a nickel electrode is shown to achieve a Faradaic efficiency for ethanol of 68% due to the strong electronic coupling between the catalyst and the support.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要