Bottom-up Integration of TMDCs with Pre-Patterned Device Architectures via Transfer-free Chemical Vapor Deposition

arXiv (Cornell University)(2023)

引用 0|浏览29
暂无评分
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) remain a topic of immense interest. Specifically, given their low operational switching costs, they find many niche applications in new computing architectures with the promise of continued miniaturization. However, challenges lie in Back End of Line (BEOL) integration temperature and time compliance regarding current requirements for crystal growth. Additionally, deleterious and time-consuming transfer processes and multiple steps involved in channel/contact engineering can cripple device performance. This work demonstrates kinetics-governed in-situ growth regimes (surface or edge growth from gold) of WSe2 and provides a mechanistic understanding of these regimes via energetics across various material interfaces. As a proof-of-concept, field effect transistors (FET) with an in-situ grown WSe2 channel across Au contacts are fabricated, demonstrating a 2D semiconductor transistor via a transfer-free method within the 450-600 C 2h-time window requirement BEOL integration. We leverage directional edge growth to fabricate contacts with robust thickness-dependent Schottky-to-Ohmic behavior. By transitioning between Au and SiO2 growth substrates in situ, this work achieves strain-induced subthreshold swing of 140 mV/decade, relatively high mobility of 107 +- 19 cm2V-1s-1, and robust ON/OFF ratios 10^6 in the fabricated FETs.
更多
查看译文
关键词
tmdcs,pre-patterned,transfer-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要