Effect of hidden geometry and higher-order interactions on the synchronization and hysteresis behavior of phase oscillators on 5-clique simplicial assemblies.

Physical review. E(2023)

引用 0|浏览0
暂无评分
摘要
The hidden geometry of simplicial complexes can influence the collective dynamics of nodes in different ways depending on the simplex-based interactions of various orders and competition between local and global structural features. We study a system of phase oscillators attached to nodes of four-dimensional simplicial complexes and interacting via positive/negative edges-based pairwise K_{1} and triangle-based triple K_{2}≥0 couplings. Three prototypal simplicial complexes are grown by aggregation of 5-cliques, controlled by the chemical affinity parameter ν, resulting in sparse, mixed, and compact architecture, all of which have 1-hyperbolic graphs but different spectral dimensions. By changing the interaction strength K_{1}∈[-4,2] along the forward and backward sweeps, we numerically determine individual phases of each oscillator and a global order parameter to measure the level of synchronization. Our results reveal how different architectures of simplicial complexes, in conjunction with the interactions and internal-frequency distributions, impact the shape of the hysteresis loop and lead to patterns of locally synchronized groups that hinder global network synchronization. Remarkably, these groups are differently affected by the size of the shared faces between neighboring 5-cliques and the presence of higher-order interactions. At K_{1}<0, partial synchronization is much higher in the compact community than in the assemblies of cliques sharing single nodes, at least occasionally. These structures also partially desynchronize at a lower triangle-based coupling K_{2} than the compact assembly. Broadening of the internal frequency distribution gradually reduces the synchronization level in the mixed and sparse communities, even at positive pairwise couplings. The order-parameter fluctuations in these partially synchronized states are quasicyclical with higher harmonics, described by multifractal analysis and broad singularity spectra.
更多
查看译文
关键词
phase oscillators,hysteresis behavior,higher-order
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要