Bond formation at polycarbonate | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$) studied by theory and experiments

arXiv (Cornell University)(2023)

引用 0|浏览11
暂无评分
摘要
Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of bonds identified by XPS are (C-O)-metal bonds, whereas C-metal bonds are the minority. Compared to the PC | Al$_2$O$_3$ interface, the PC | TiO$_2$ and PC | TiAlO$_2$ interfaces exhibit a reduction in the measured interfacial bond density by ~ 75 and ~ 65%, respectively. Multiplying the predicted bond strength with the corresponding experimentally determined interfacial bond density shows that Al$_2$O$_3$ exhibits the strongest interface with PC, while TiO$_2$ and TiAlO$_2$ exhibit ~ 70 and ~ 60% weaker interfaces, respectively. This can be understood by considering the complex interplay between the metal oxide composition, the bond strength as well as the population of bonds that are formed across the interface.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要