谷歌浏览器插件
订阅小程序
在清言上使用

Nonlinear Nanoresonators for Bell State Generation

Applied physics reviews(2024)

引用 0|浏览24
暂无评分
摘要
Entangled photon states are a fundamental resource for optical quantum technologies and investigating the fundamental predictions of quantum mechanics. Up to now such states are mainly generated in macroscopic nonlinear optical systems with elaborately tailored optical properties. In this theoretical work, we extend the understanding on the generation of entangled photonic states toward the nanoscale regime by investigating the fundamental properties of photon-pair generation in sub-wavelength nonlinear nanoresonators. Taking materials with Zinc-Blende structure as an example, we reveal that such systems can naturally generate various polarization-entangled Bell states over a very broad range of wavelengths and emission directions, with little to no engineering needed. Interestingly, we uncover different regimes of operation, where polarization-entangled photons can be generated with dependence on or complete independence from the pumping wavelength and polarization, and the modal content of the nanoresonator. Our work also shows the potential of nonlinear nanoresonators as miniaturized sources of biphoton states with highly complex and tunable properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要