HFedMTL: Hierarchical Federated Multi-Task Learning.

PIMRC(2022)

引用 0|浏览6
暂无评分
摘要
Federated learning is an effective way to enable artificial intelligence over massive distributed nodes with security and communication efficiency. Some previous works primarily focus on learning a single global model for a unique task across the network, which is less competent to handle multi-task scenarios with stragglers and fault, after adopting the general gradient update methods in a federated environment. Others aim to learn a distinct model for each node, which is expensive in terms of the computation and communication cost. Using hierarchical network to reduce communication cost is becoming a new candidate. Thus, we propose a primal-and-dual method-based hierarchical federated multi-task learning system, supported with HFedMTL algorithm that allows massive nodes from distributed areas to join in the federated multi-task learning process. Empirical experiments verify the analysis and demonstrate the benefits of improving the learning performance and convergence rate.
更多
查看译文
关键词
hfedmtl,learning,multi-task
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要