Efficient and Stable Perovskite White Light-Emitting Diodes for Backlit Display

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 26|浏览9
暂无评分
摘要
High-quality backlit display puts forward urgent demand for color-converting materials. Recently, metal halide perovskites (MHPs) with full spectral tunability, high photoluminescence quantum yields (PLQYs), and high color purity have found potential application in wide-color-gamut display. Regrettably, naked MHPs suffer from long-term instable issue and cannot pass harsh stability tests. Herein, amorphous-glass-protected green/red CsPbX3 quantum dots (QDs) are prepared by elaborately optimizing glass structure, perovskite concentration, and in situ crystallization. PLQYs of green CsPbBr3@glass and red CsPbBr1.5I1.5@glass reach 94% and 78%, respectively, which are the highest ones of CsPbX3@glass composites reported so far and comparable to colloidal counterparts. Benefited from complete isolation of QDs from external environment by glass network, CsPbX3@glass can endure harsh commercial standard aging tests of 85 degrees C/85%RH and blue-light-irradiation, which are applied to construct white light-emitting diodes (wLEDs) with high external quantum efficiency of 13.8% and ultra-high luminance of 500 000 cd m(-2). Accordingly, the perovskite wLED arrays-based backlit unit and a prototype display device are designed for the first time, showing more vivid and wide-color-gamut feature benefited from narrowband emissions of CsPbX3 QDs. This work highlights practical application of CsPbX3@glass composite as an efficient and stable light color converter in backlit display.
更多
查看译文
关键词
backlit display,diodes,light‐emitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要