Nonlinear Modeling and Stability Analysis of Asymmetric Hydro-Turbine Governing System
APPLIED MATHEMATICAL MODELLING(2023)
Abstract
This paper aims to study the stability and nonlinear dynamics of hydro-turbine governing system with asymmetric water diversion system, i.e. asymmetric hydro turbine governing system, by using Hopf bifurcation theory. Firstly, the full nonlinear mathematical model of asymmetric hydro turbine governing system is established by all system components and nonlinear head loss. This model contains two units with different capacities which share a common pipeline. Based on the nonlinear mathematical model, the multi-stability charac-teristics of asymmetric hydro turbine governing system under load disturbance is studied by using stable domain and verified by numerical simulation. Moreover, the multi-time scale oscillation is revealed and its relationship to system multi-stability is investigated. Furthermore, the effect of system parameters and topological parameters on system stabil-ity is analyzed. Results indicate that: two stable domains are emerged under load distur-bance, the overall stability of asymmetric hydro turbine governing system is determined by the intersection area of the two stable domains. In addition, the system parameters and topological parameters both have obvious effect on system stability, which can be sig-nificantly improved by reasonable tuning of system parameters and optimization of water diversion system layout.(c) 2023 Elsevier Inc. All rights reserved.
MoreTranslated text
Key words
Hydro -turbine governing system,Asymmetric topology,Hopf bifurcation analysis,Multi -stability characteristics
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Journal of Energy Storage 2024
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper