Surface modification of ITER-like mirrors after one hundred cleaning cycles using radio-frequency plasma

JOURNAL OF NUCLEAR MATERIALS(2023)

引用 0|浏览7
暂无评分
摘要
In ITER, the metallic first mirrors (FMs) will undergo erosion due to their proximity to the fusion plasma and deposition of materials originated from the first walls (mainly beryllium). In-situ plasma cleaning is a promising technique to conserve the FMs optical properties by means of ion sputtering. In this work, the evolution of the optical properties of single-crystal (Sc) and nanocrystalline (Nc) molybdenum (Mo) and rhodium (Rh) mirrors were investigated up to 100 cycles of consecutive contamination and cleaning. Alu-minum oxide (Al2O3) was used as contaminant to replace the toxic beryllium. The plasma cleaning was carried out using a capacitively coupled argon (Ar) plasma excited by a 60 MHz radio-frequency genera-tor resulting in the formation of a self-bias applied on the mirrors of-280 V. The plasma potential being around 30 V, the Ar ion energy was about 310 eV. The optical properties of the mirrors were assessed using ex-situ reflectivity measurements. Moreover, the surface topography was characterized by means of scanning electron microscopy (SEM), focused ion beam (FIB) and roughness measurements using atomic force microscopy (AFM). ScMo and ScRh mirrors formerly exposed to 80 successful cleaning cycles using aluminum/tungsten (Al/W) deposits and air storage exhibit drastic changes in their optical properties af-ter being subject to cleaning cycles using Al2O3 as contaminant. Additionally, freshly polished ScRh were exposed to identical cleaning cycles. All Sc mirrors exhibited pits induced by the polishing procedure us-ing diamond paste in addition of mounds/wavy patterns. The carbon incorporated during the polishing process was demonstrated to be responsible for the pitting of the surface. The Nc mirrors preserved their initial reflectivities after up to 100 cycles. The surface topography was systematically characterized and an average erosion rate for NcRh mirrors of about 59 nm per cycle has been estimated from FIB cross-sections. The optical properties of the Nc mirrors showed a superiority in the present study in comparison to the Sc materials due to the influence of their polishing procedures.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
更多
查看译文
关键词
cleaning cycles,plasma,iter-like,radio-frequency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要