谷歌浏览器插件
订阅小程序
在清言上使用

Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy

CHEMOSENSORS(2023)

引用 3|浏览9
暂无评分
摘要
The fabrication technology of surface nanocomposites based on hexagonally ordered gold nanoparticle (AuNP) layers (quasi-arrays) and their possible application as surface-enhanced Raman spectroscopy (SERS) substrates are presented in this paper. The nanoparticle layers are prepared using a nanotextured template formed by porous anodic alumina (PAA) and combined with gold thin-film deposition and subsequent solid-state dewetting. Three types of hexagonal arrangements were prepared with different D/D-0 values (where D is the interparticle gap, and D-0 is the diameter of the ellipsoidal particles) on a large surface area (similar to cm(2) range), namely, 0.65 +/- 0.12, 0.33 +/- 0.10 and 0.21 +/- 0.09. The transfer of the particle arrangements to transparent substrates was optimized through three generations, and the advantages and disadvantages of each transfer technology are discussed in detail. Such densely packed nanoparticle arrangements with high hot-spot density and tunable interparticle gaps are very beneficial for SERS applications, as demonstrated with two practical examples. The substrate-based enhancement factor of the nanocomposites was determined experimentally using a DNA monolayer and was found to be between 4 x 10(4) and 2 x 10(6) for the different particle arrangements. We also determined the sensing characteristics of a small dye molecule, rhodamine 6G (R6G). By optimizing the experimental conditions (e.g., optimizing the laser power and the refractive index of the measurement medium with an ethylene-glycol/water mixture), concentrations as low as 10(-16) M could be detected at 633 nm excitation.
更多
查看译文
关键词
AuNPs,nanocomposite,SERS,DNA,R6G
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要