谷歌浏览器插件
订阅小程序
在清言上使用

Reconstruction of High-Frequency Methane Atmospheric Concentration Peaks from Measurements Using Metal Oxide Low-Cost Sensors

ATMOSPHERIC MEASUREMENT TECHNIQUES(2023)

引用 3|浏览18
暂无评分
摘要
Deploying a dense network of sensors around emitting industrial facilities allows to detect and quantify possible CH4 leaks and monitor the emissions continuously. Designing such a monitoring network with highly precise instruments is limited by the elevated cost of instruments, requirements of power consumption and maintenance. Low cost and low power metal oxide sensor could come handy to be an alternative to deploy this kind of network at a fraction of the cost with satisfactory quality of measurements for such applications.Recent studies have tested Metal Oxide Sensors (MOx) on natural and controlled conditions to measure atmospheric methane concentrations and showed a fair agreement with high precision instruments, such as those from Cavity Ring Down Spectrometers (CRDS). Such results open perspectives regarding the potential of MOx to be employed as an alternative to measure and quantify CH4 emissions on industrial facilities. However, such sensors are known to drift with time, to be highly sensitive to water vapor mole fraction, have a poor selectivity with several known cross-sensitivities to other species and present significant sensitivity environmental factors like temperature and pressure. Different approaches for the derivation of CH4 mole fractions from the MOx signal and ancillary parameter measurements have been employed to overcome these problems, from traditional approaches like linear or multilinear regressions to machine learning (ANN, SVM or Random Forest).Most studies were focused on the derivation of ambient CH4 concentrations under different conditions, but few tests assessed the performance of these sensors to capture CH4 variations at high frequency, with peaks of elevated concentrations, which corresponds well with the signal observed from point sources in industrial sites presenting leakage and isolated methane emission. We conducted a continuous controlled experiment over four months (from November 2019 to February 2020) in which three types of MOx Sensors from Figaro® measured high frequency CH4 peaks with concentrations varying between atmospheric background levels up to 24 ppm at LSCE, Saclay, France. We develop a calibration strategy including a two-step baseline correction and compared different approaches to reconstruct CH4 spikes such as linear, multilinear and polynomial regression, and ANN and random forest algorithms. We found that baseline correction in the pre-processing stage improved the reconstruction of CH4 concentrations in the spikes. The random forest models performed better than other methods achieving a mean RMSE = 0.25 ppm when reconstructing peaks amplitude over windows of 4 days. In addition, we conducted tests to determine the minimum amount of data required to train successful models for predicting CH4 spikes, and the needed frequency of re-calibration / re-training under these controlled circumstances. We concluded that for a target RMSE <= 0.3 ppm at a measurement frequency of 5s, 4 days of training are required, and a recalibration / re-training is recommended every 30 days.Our study presents a new approach to process and reconstruct observations from low cost CH4 sensors and highlights its potential to quantify high concentration releases in industrial facilities.
更多
查看译文
关键词
Air Quality Monitoring,Low-Cost Sensors,Gas Sensing,Environmental Monitoring,Emissions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要